3,306 research outputs found

    Biphasic behaviour in malignant invasion

    Get PDF
    Invasion is an important facet of malignant growth that enables tumour cells to colonise adjacent regions of normal tissue. Factors known to influence such invasion include the rate at which the tumour cells produce tissue-degrading molecules, or proteases, and the composition of the surrounding tissue matrix. A common feature of experimental studies is the biphasic dependence of the speed at which the tumour cells invade on properties such as protease production rates and the density of the normal tissue. For example, tumour cells may invade dense tissues at the same speed as they invade less dense tissue, with maximal invasion seen for intermediate tissue densities. In this paper, a theoretical model of malignant invasion is developed. The model consists of two coupled partial differential equations describing the behaviour of the tumour cells and the surrounding normal tissue. Numerical methods show that the model exhibits steady travelling wave solutions that are stable and may be smooth or discontinuous. Attention focuses on the more biologically relevant, discontinuous solutions which are characterised by a jump in the tumour cell concentration. The model also reproduces the biphasic dependence of the tumour cell invasion speed on the density of the surrounding normal tissue. We explain how this arises by seeking constant-form travelling wave solutions and applying non-standard phase plane methods to the resulting system of ordinary differential equations. In the phase plane, the system possesses a singular curve. Discontinuous solutions may be constructed by connecting trajectories that pass through particular points on the singular curve and recross it via a shock. For certain parameter values, there are two points at which trajectories may cross the singular curve and, as a result, two distinct discontinuous solutions may arise

    The self-care for people initiative: the outcome evaluation.

    Get PDF
    To determine the effects of a community-based training programme in self-care on the lay population

    Self-care in primary care: findings from a longitudinal comparison study.

    Get PDF
    To examine the effects of self-care training workshops for primary healthcare workers on frequently attending patients

    Common envelope ejection in massive binary stars - Implications for the progenitors of GW150914 and GW151226

    Full text link
    The recently detected gravitational wave signals (GW150914 and GW151226) of the merger event of a pair of relatively massive stellar-mass black holes (BHs) calls for an investigation of the formation of such progenitor systems in general. We analyse the common envelope (CE) stage of the "traditional" formation channel in binaries where the first-formed compact object undergoes an in-spiral inside the envelope of its evolved companion star and ejects the envelope in that process. We calculate envelope binding energies of donor stars with initial masses between 4 and 115 Msun for metallicities of Z=Zsun/2 and Z=Zsun/50, and derive minimum masses of in-spiralling objects needed to eject these envelopes. We find that CE evolution, besides from producing WD-WD and NS-NS binaries, may, in principle, also produce massive BH-BH systems with individual BH component masses up to ~50-60 Msun, in particular for donor stars evolved to giants. However, the physics of envelope ejection of massive stars remains uncertain. We discuss the applicability of the energy-budget formalism, the location of the bifurcation point, the recombination energy and the accretion energy during in-spiral as possible energy sources, and also comment on the effect of inflated helium cores. Massive stars in a wide range of metallicities and with initial masses up to at least 115 Msun may possibly shed their envelopes and survive CE evolution, depending on their initial orbital parameters, similarly to the situation for intermediate mass and low-mass stars with degenerate cores. We conclude that based on stellar structure calculations, and in the view of the usual simple energy budget analysis, events like GW150914 and GW151226 could possibly be produced from the CE channel. Calculations of post-CE orbital separations, however, and thus the estimated LIGO detection rates, remain highly uncertain. [Abridged]Comment: 13 pages, 7 figures, A&A accepte

    Screening of a HUVEC cDNA library with transplant-associated coronary artery disease sera identifies RPL7 as a candidate autoantigen associated with this disease.

    Get PDF
    A HUVEC cDNA library was screened with sera from two patients who had developed transplant-associated coronary artery disease (TxCAD) following cardiac transplantation. A total of six positive clones were isolated from a primary screen of 40 000 genes. Subsequent DNA sequence analysis identified these to be lysyl tRNA synthetase, ribosomal protein L7, ribosomal protein L9, beta transducin and TANK. Another gene whose product could not be identified showed homology to a human cDNA clone (DKFZp566M063) derived from fetal kidney. Full-length constructs of selected genes were expressed as his-tag recombinant fusion proteins and used to screen a wider patient base by ELISA to determine prevalence and association with TxCAD. Of these ribosomal protein L7 showed the highest prevalence (55.6%) with TxCAD sera compared to 10% non-CAD

    Asteroseismic test of rotational mixing in low-mass white dwarfs

    Full text link
    We exploit the recent discovery of pulsations in mixed-atmosphere (He/H), extremely low-mass white dwarf precursors (ELM proto-WDs) to test the proposition that rotational mixing is a fundamental process in the formation and evolution of low-mass helium core white dwarfs. Rotational mixing has been shown to be a mechanism able to compete efficiently against gravitational settling, thus accounting naturally for the presence of He, as well as traces of metals such as Mg and Ca, typically found in the atmospheres of ELM proto-WDs. Here we investigate whether rotational mixing can maintain a sufficient amount of He in the deeper driving region of the star, such that it can fuel, through HeII-HeIII ionization, the observed pulsations in this type of stars. Using state-of-the-art evolutionary models computed with MESA, we show that rotational mixing can indeed explain qualitatively the very existence and general properties of the known pulsating, mixed-atmosphere ELM proto-WDs. Moreover, such objects are very likely to pulsate again during their final WD cooling phase.Comment: accepted for publication in A&A Letter
    corecore